
Fig. 5 4-bits quantization: GRU weights
convergence. z-axis is epoch

Universal 1-bit weight quantization
• PTQ of 1-bit weights is too destructive → Need weight

optimization and 1-bit quantization during the training phase!
• Bias are kept in 32-bits like the activation
• Model, framework & problem agnostic algorithm → Scalable

+ flexible to any layer → Allow hybrid 𝟏; 𝟖 -bits quantization.

We found 2 solutions of our algorithm**: 𝑺𝟏, 𝑺𝟐.

Towards Universal 1-bit Weight Quantization of

Neural Networks on Ultra-low Power Sensors

Minh Tri Lê*^, Etienne de Foras*

*TDK InvenSense; ^Inria Grenoble Rhône-Alpes

Goal
• Aim for 1-bit weights:

• Reduce model size by x8 (versus 8-bits model)
• Faster and low-power inference

• Preserve acceptable performance (accuracy, memory,
latency…)

• Hassle-free method: few manual tweaks, seamless integration
with our current tinyMLOps workflow

• Scalable to standard NN layers (Fully-connected, RNNs, CNN…)
across many applications.

Results on gesture recognition:
Where to apply our 1-bit quantization algorithm?
• Input, middle, output layer?
• Convolution, RNNs, Fully-connected?

Model architecture: CNN -> GRU -> FC

→ Binary convolution is less sensitive than binary GRU layers and that the
output decision layer is also critical.

→ 1-bit performance is preserved for convolution only, else it is acceptable for
some models.

→ Overall, 𝑺𝟐 has less variance than 𝑺𝟏 except when quantizing GRU only layer
although 𝑺𝟏 performs quite similarly.

The full binary quantized model is
45% smaller than its int8 baseline.
(Bias are kept in 32-bits)

Conclusion, future work, open challenges,
• Successfully improved our tinyML workflow by quantizing standard models

down to 1-bit with a universal and hassle-free algorithm
• Enabled flexibility of per-layer hybrid quantization
• Obtained acceptable loss for 1-bit models on MNIST and gesture recognition
• Demonstrated potential for a N-bits generalization approach, and so N-bits

hybrid quantization

Future work:
• Can we compensate 1-bit quantization performance loss by selecting larger

baseline models? If so, which layers should we enlarge and how much?
• Comparing rounding strategies other than nearest.
• Running more extensive tests on the N-bits generalization and add hardware

support for N-bits hybrid inference to leverage the power footprint gain.

References:
[1]

N. Zmora, H. Wu, and J. Rodge, “Achieving FP32 Accuracy for INT8 Inference Using Quantization Aware
Training with NVIDIA TensorRT,” NVIDIA Technical Blog 2021.

[2]
M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic Rounding: Implementation, Error
Analysis, and Applications,” 2021.

[3]
M. Nagel, R. A. Amjad, M. van Baalen, C. Louizos, and T. Blankevoort, “Up or Down? Adaptive
Rounding for Post-Training Quantization,” 2020

[4]
A. Bulat, G. Tzimiropoulos, J. Kossaifi, and M. Pantic, “Improved training of binary networks for human
pose estimation and image recognition.” 2019.

Generalization to N-bits quantization:
We generalize our algorithm for N-bits quantization:
• Models are converging towards discrete weights

Fig.1 8-bit quantization of a floating-point tensor 𝑥𝑓 to [-128, 127] [1]

Train model:
Conjointly optimize weights
for quantization and
application with 𝑺𝟏 or 𝑺𝟐

Rounding strategy:
Nearest, stochastic
rounding[2], AdaRound[3]…

Deployment to low-power MCU:
Full 1-bit quantization or
Hybrid {1,8}-bits quantization

Test on MNIST
• We apply 𝑺𝟏 on all layers of a standard CNN.
→ Fast weight convergence towards {−1; +1}
• Accuracy loss <1%

.

Fig. 2 Weight distribution of the first conv2d layer of a CNN (epoch {2; 5; 10})

Epoch 2 Epoch 5 Epoch 10

Introduction
Our tinyMLOps workflow supports:
• End-to-end model deployment on

ultra-low power sensors (Arm M0+, M4)
as low as ~10kB

• Standard NN layers and activations

Current quantization algorithm:
• Post-training quantization (PTQ)
• 8-bit integer weights, 32-bit bias
• Low performance loss

(↘ 1-2% accuracy)
• ➡ We can go lower!

• + Model agnostic method
• + Very easy to integrate in a tinyML pipeline
• - Not optimized (sensitive to outliers)

Model type Model size (bytes)

Baseline float32 1284

Baseline int8 504

Full binary baseline 276.5

**Under patent review

Fig. 3 Layer sensitivity to before/after binary rounding of full or hybrid quantized model
(5x independent repetitions)

Fig. 4 2-bits quantization: GRU recurrent
weight convergence. z-axis is epoch

Ternary quantization 4-bits quantization

